NETWORK THEORY AND ANALYSIS LAB

Course Code	19EC3351	Year	II	Semester	Ι
Course	Program	Branch	ECE	Course Type	Lab
Category	Core				
Credits	1	L-T-P	0-0-2	Prerequisites	Nil
Continuous	25	Semester	50	Total Marks	75
Internal		End			
Evaluation		Evaluation			

Course Outcomes					
Upon	successful completion of the course, the student will be able to				
CO1	Estimate the steady state response of circuits for sinusoidal excitation				
CO2	Analyse various circuits in the time and transform domains using transient analysis				
	methods				
CO3	Analyse various networks by applying transformation techniques, mesh analysis, nodal				
	analysis and network theorems				
CO4	Evaluate the bandwidth and quality factor of series and parallel resonant circuits				
CO5	Determine the characteristics of different two port networks				

Contribution of Course Outcomes towards achievement of Program Outcomes &														
Strength o	of corre	lations	(3-Hig	gh, 2: N	ledium	, 1:Lov	N)							
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2			1	1	1		1	2	1
CO2	3	3	2	2	2			1	1	1		1	2	1
CO3	3	3	2	2	2			1	1	1		1	2	1
CO4	3	3	2	2	2			1	1	1		1	2	1
CO5	3	3	2	2	2			1	1	1		1	2	1

	Syllabus					
Expt. No.	Contents	Mapped CO				
Ι	Measurement of sinusoidal voltage, frequency and effective and average values using CRO	CO1				
II	Experimental determination of step response of RL, RC circuits	CO2				
III	Experimental determination of step response of RLC circuits	CO2				
IV	IV Experimental determination of time constant of series RL & RC circuits					
V	Experimental determination of frequency response of RLC circuits	CO2				
VI	Experimental verification of Kirchhoff's voltage and current laws	CO3				
VII	Experimental verification of Thevenin's and Norton's theorems	CO3				
VIII	Experimental verification of Superposition Theorem	CO3				
IX	Experimental verification of Maximum power transfer Theorem	CO3				
Х						
XI	Simulation of a given parallel resonant circuit	CO4				

XII Determination of parameters for a given two port network
--

CO5

Learning Resources
Text Books
1. M.E.VanValkenburg, Network Analysis, III Edition, Pearson Education
2. ASudhakar and ShyammohanSPalli, Circuits and Networks, 5 th Edition, McGraw Hill
Reference Books
1. William H Hayt, Jack E Kimmerly and Steven M. Durbin, Engineering Circuit Analysis, Tata
McGraw Hill
2.Ravish R Singh, Network Analysis and Synthesis, Tata McGraw Hill Education (India)
Pvt.Ltd, New Delhi.
e- Resources & other digital material
1. <u>https://www.youtube.com/playlist?list=PLC7D3EAEFA0CC0420&app=desktop</u>
2.https://www.tutorialspoint.com/network_theory/network_theory_quick_guide.htm
3 https://pptol.og.in/courses/102/105/108105150/

3.<u>https://nptel.ac.in/courses/108/105/108105159/</u>